The Moment of Meaning
The Moment of Meaning

Johan Bos

Joint work with:
- Antonio Toral
- Barbara Plank
- Duc-Duy Nguyen
- Fabrizio Esposito
- Hessel Haagsma
- Johannes Bjerva
- Kilian Evang
- Lasha Abzianidze
- Malvina Nissim
- Mostafa Abdou
- Noortje Venhuizen
- Pierre Ludmann
- Rik van Noord
- Talita Antonio
- Valerio Basile
recognizing textual entailment, large annotated corpora, distributional semantics

Montague semantics

1970s

under-specification, automated inference

1980s

distribuKonal semanKcs

1990s

wide coverage semanKc parsers

2000s

under-­‐specificaKon, automated inference

2010s

recognizing textual entailment, large annotated corpora, distributional semantics

2020s

parsers for small fragments, dynamic semantics

1980s

dynamic semanKcs

2000s

Why Semantics?

① Future Language Technology requires semantic interpretation – “explainable NLP”
② Improve MT – contradiction checking
③ Semantics is fun because it is super-interdisciplinary
Nothing sucks like an Electrolux
Machine Translation

I saw two birds with a cat.

Ik zag twee vliegen in een kat.

2017: bad

2018: good
Machine Translation

I saw two birds with a cat.

Ik zag twee vliegen in een kat.

Dat neemt niet weg dat er problemen zijn.

That does not mean that there are problems.
Explication

English: The "Magpies", Newcastle United Football Club, have ...

German: Die "Elstern", **wie der** Newcastle United Football Club **auch genannt wird**, brachten ...

Hyperonym – Hyponym

English: ... have produced some of Britain’s finest **players**.

German: ... brachten einige der besten **Fußballspieler** Großbritanniens hervor.

Co-Hyponym

English: ... the chance to **taste a pint** of beer and have a chat with the locals

German: ... die Gelegenheit **ein Glas** Bier zu **trinken** und mit den Einheimischen zu plaudern.

Simile

English: ... passing through the ranks of the Ostyak (...) **like a scythe through standing grain**.

German: ... herüberwanderten und Otjaken (...) **buchstäblich niedermähten**.

Anaphoric Expression

English: Construction of the first floor (...) began on August 9, 1173. **This first floor** is ...

German: Der Bau der ersten Etage (...) begann am 9. August 1173. **Diese Etage** ist ...

Numerical Expression (Langeveld 1986)

English: That man is **not above** forty. (**e.g.** \(\leq 40 \))

Dutch: Die man is **nog geen** veertig. (**e.g.** \(< 40 \))
Meaning Banking
Motivation
- Integrate Lexical and Formal Sem.
- Gold-standard meanings
- Multi-lingual
- Resource for parsing/translation

Method
- Machine-produced, human-corrected
- Language-neutral annotation
- Use parallel corpora
- English first, annotation projection

Results
- Four languages
- WordNet/VerbNet/DRT
- Bronze/Silver/Gold data
- Easily available: pmb.let.rug.nl

Discourse Representation Theory (Kamp 1981)
This school was founded in 1650.

<table>
<thead>
<tr>
<th>x1</th>
<th>e1</th>
<th>t1</th>
</tr>
</thead>
<tbody>
<tr>
<td>school.n.01(x1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time.n.08(t1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YearOfCentury(t1, 1650)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t1 < now</td>
<td></td>
<td></td>
</tr>
<tr>
<td>found.v.01(e1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time(e1, t1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theme(e1, x1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diese Schule wurde 1650 gegründet.

<table>
<thead>
<tr>
<th>x1</th>
<th>t1</th>
<th>e1</th>
<th>x2</th>
</tr>
</thead>
<tbody>
<tr>
<td>school.n.01(x1)</td>
<td>(x1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time.n.08(t1)</td>
<td>(t1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YearOfCentury(t1, 1650)</td>
<td>(1650)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t1 > now</td>
<td>(t1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>found.v.01(e1)</td>
<td>(e1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time(e1, t1)</td>
<td>(t1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theme(e1, x1)</td>
<td>(x1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Language-Neutral Linguistic Analysis

Segmentation: 1 tagset, 1 tokeniser (Elephant)
Parsing: 1 tagset, 1 parser (easyCCG)
Semantic Tagging: 1 tagset, 1 tagger
Boxing: 1 boxer
<table>
<thead>
<tr>
<th>Rule</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>X/Y</td>
<td>Y \rightarrow X</td>
</tr>
<tr>
<td>X/Y</td>
<td>Y/Z \rightarrow B</td>
</tr>
<tr>
<td>X/Y</td>
<td>Y/Z \rightarrow Bx</td>
</tr>
<tr>
<td>$(X/Y)/Z$</td>
<td>Y/Z \rightarrow S</td>
</tr>
<tr>
<td>Y</td>
<td>X/Y \rightarrow $<B$</td>
</tr>
<tr>
<td>Y/Z</td>
<td>X/Y \rightarrow $<Bx$</td>
</tr>
<tr>
<td>Y/Z</td>
<td>X/Y \rightarrow $<Sx$</td>
</tr>
<tr>
<td>X</td>
<td>$Y/(Y\backslash X)$ \rightarrow $>_T$</td>
</tr>
<tr>
<td>X/Z</td>
<td>$Y/(Y\backslash X)$ \rightarrow $<_T$</td>
</tr>
</tbody>
</table>

CCG

Combinatory Categorial Grammar (Steedman 2000)
Deze school is opgericht in 1650.
Semantic Tagging

- 72 sem-tags divided into 13 classes
- Designed in a data-driven fashion
- POS-tagging not informative enough
- Includes named entity recognition
- Semantically motivated
- Language-neutral

Compositional Semantics (λ-DRT)
Projection with a Twist: EN → NL (PMB 19/0830)

Word alignment (Giza ++)

Copy, Merge & Split

Copy: transfer of category from source to target

Merge: two source categories merge into one target category (composition)

Split: one source category into two target categories (de-composition)

Examples:

- **Copy:**
 - X/Y Y/Z
 - X/Z

- **Merge:**
 - X

- **Split:**
 - X/X X

Notes:

- N/N: default
- N: value
- N: standaardbedrag

- NP: you
- (S\NP)/NP: have

- S/(S\NP): you

- S/NP: hai

- S_{[adj]}\NP: impossible

- (S/\NP)/(S/\NP): niet
 - S_{[adj]}\NP: mogelijk
Projection challenges – an example

PMB: 10/0864

: My eyes hurt.

: Meine Augen schmerzen.

: Ik heb pijn aan mijn ogen.

: Mi fanno male gli occhi.
Learning from translations

PMB: 59/1946
I do like ice cream.
Ich mag wirklich Eiscreme.

PMB: 68/2811
I do believe it’s called a leek.
Io credo davvero che si chiama porro.
Boxing Day
DRS – Discourse Representation Structure

<table>
<thead>
<tr>
<th>x1</th>
<th>x2</th>
<th>x3</th>
</tr>
</thead>
<tbody>
<tr>
<td>08293641(x1)</td>
<td>15160774(x2)</td>
<td>02431950(x3)</td>
</tr>
<tr>
<td>ARG23(x2,1650)</td>
<td>(<(x2,\text{now}))</td>
<td>ARG6(x3,x2)</td>
</tr>
<tr>
<td>ARG3(x3,x2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x1</th>
<th>e1</th>
<th>t1</th>
</tr>
</thead>
<tbody>
<tr>
<td>school.n.01(x1)</td>
<td>time.n.08(t1)</td>
<td>YearOfCentury(t1,1650)</td>
</tr>
<tr>
<td>t1 < now</td>
<td>establish.v.01(e1)</td>
<td>Time(e1,t1)</td>
</tr>
<tr>
<td>Theme(e1,x1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x1</th>
<th>e1</th>
<th>t1</th>
</tr>
</thead>
<tbody>
<tr>
<td>school.n.01(x1)</td>
<td>time.n.08(t1)</td>
<td>YearOfCentury(t1,1650)</td>
</tr>
<tr>
<td>t1 < now</td>
<td>establish.v.01(e1)</td>
<td>Time(e1,t1)</td>
</tr>
<tr>
<td>Theme(e1,x1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(e1 / establish-01
 :ARG1 (x1 / school)
 :time (t1 / date-entity
 :year 1650))
[e1 | establish-01
 :ARG1 [x1 | school]
 :time [t1 | date-entity
 :year 1650]]

e1 x1 t1

establish.v.01(e1)
 Theme(e1,x1)
 Time(e1,t1)
school.n.01(x1)
time.n.08(t1)
 YearOfCentury(t1,1650)
t1 < now
[e1 | establish-01(e1)
 :ARG1 [x1 | school(x1)]
 :time [t1 | date-entity(t1)
 :year 1650]]
ARS

[e1 | establish-01(e1)
 ARG1(e1,x1) [x1 | school(x1)]
 time(e1,t1) [t1 | date-entity(t1)
 year(t1,1650)]]

DRS

<table>
<thead>
<tr>
<th>e1 x1 t1</th>
</tr>
</thead>
<tbody>
<tr>
<td>establish.v.01(e1)</td>
</tr>
<tr>
<td>Theme(e1,x1)</td>
</tr>
<tr>
<td>Time(e1,t1)</td>
</tr>
<tr>
<td>school.n.01(x1)</td>
</tr>
<tr>
<td>time.n.08(t1)</td>
</tr>
<tr>
<td>YearOfCentury(t1,1650)</td>
</tr>
<tr>
<td>t1 < now</td>
</tr>
</tbody>
</table>
DRS

[e1 x1 t1 |
 establish-01(e1)
 ARG1(e1,x1)
 time(e1,t1)
 school(x1)
 date-entity(t1)
 year(t1,1650)]

DRS

e1 x1 t1

 establish.v.01(e1)
 Theme(e1,x1)
 Time(e1,t1)
 school.n.01(x1)
 time.n.08(t1)
 YearOfCentury(t1,1650)

 t1 < now
96/2544 These headphones don’t work.

Show: pointers senses
DRS: context-sensitive

96/2544 These headphones don’t work.

Show: ✔️ pointers ✔️ senses

Most likely interpretation

41/2289: Tom is stuck in his sleeping bag.
<table>
<thead>
<tr>
<th></th>
<th>List of Phenomena (PMB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MWE nouns</td>
</tr>
<tr>
<td>2</td>
<td>MWE particle verbs</td>
</tr>
<tr>
<td>3</td>
<td>Named entities</td>
</tr>
<tr>
<td>4</td>
<td>Person gender</td>
</tr>
<tr>
<td>5</td>
<td>Literal names</td>
</tr>
<tr>
<td>6</td>
<td>Word senses WN</td>
</tr>
<tr>
<td>7</td>
<td>Thematic roles VN</td>
</tr>
<tr>
<td>8</td>
<td>Comparison op</td>
</tr>
<tr>
<td>9</td>
<td>Agent/Role nouns</td>
</tr>
<tr>
<td>10</td>
<td>Quantification</td>
</tr>
<tr>
<td>11</td>
<td>Definite descriptions</td>
</tr>
<tr>
<td>12</td>
<td>Pronouns</td>
</tr>
<tr>
<td>13</td>
<td>Possessives</td>
</tr>
<tr>
<td>14</td>
<td>Discourse relations</td>
</tr>
<tr>
<td>15</td>
<td>Numbers</td>
</tr>
<tr>
<td>16</td>
<td>Dates</td>
</tr>
<tr>
<td>17</td>
<td>Clock times</td>
</tr>
<tr>
<td>18</td>
<td>Decades</td>
</tr>
<tr>
<td>19</td>
<td>Scores</td>
</tr>
<tr>
<td>20</td>
<td>Negation</td>
</tr>
<tr>
<td>21</td>
<td>Never/always</td>
</tr>
<tr>
<td>22</td>
<td>Disjunction</td>
</tr>
<tr>
<td>23</td>
<td>Conditionals</td>
</tr>
<tr>
<td>24</td>
<td>Past tense</td>
</tr>
<tr>
<td>25</td>
<td>Present tense</td>
</tr>
<tr>
<td>26</td>
<td>Future tense</td>
</tr>
<tr>
<td>27</td>
<td>Container nouns</td>
</tr>
<tr>
<td>28</td>
<td>Arithmetic</td>
</tr>
<tr>
<td>29</td>
<td>Modals <></td>
</tr>
<tr>
<td>30</td>
<td>Modals []</td>
</tr>
<tr>
<td>31</td>
<td>Spatial relations</td>
</tr>
<tr>
<td>32</td>
<td>Co-reference</td>
</tr>
<tr>
<td>33</td>
<td>Control</td>
</tr>
<tr>
<td>34</td>
<td>Coordination</td>
</tr>
<tr>
<td>35</td>
<td>Deictic pronouns</td>
</tr>
<tr>
<td>36</td>
<td>Reflexive pronouns</td>
</tr>
<tr>
<td>37</td>
<td>Measures</td>
</tr>
<tr>
<td>38</td>
<td>Noun compounds</td>
</tr>
<tr>
<td>39</td>
<td>GPE Adjectives</td>
</tr>
<tr>
<td>40</td>
<td>Weather verbs</td>
</tr>
<tr>
<td>41</td>
<td>Questions</td>
</tr>
<tr>
<td>42</td>
<td>Imperatives</td>
</tr>
</tbody>
</table>
Drowning by Numbers
Evaluating Meaning Representations

<table>
<thead>
<tr>
<th>Semantic Evaluation</th>
<th>Syntactic Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Check for logical equivalence</td>
<td>• Check matching tuples</td>
</tr>
<tr>
<td>• Use standard theorem provers for first-order logic</td>
<td>• Implementations:</td>
</tr>
<tr>
<td>(Blackburn & Bos 2005)</td>
<td>• Allen et al. 2008</td>
</tr>
<tr>
<td>• Discrete Score:</td>
<td>• Smatch (Cai & Knight 2013)</td>
</tr>
<tr>
<td>0 (no proof)</td>
<td>• Counter (van Noord et al. 2018)</td>
</tr>
<tr>
<td>1 (proof)</td>
<td>• Continuous Score:</td>
</tr>
<tr>
<td></td>
<td>0.00 (no matches)</td>
</tr>
<tr>
<td></td>
<td>0.XX (some but not all)</td>
</tr>
<tr>
<td></td>
<td>1.00 (perfect match)</td>
</tr>
</tbody>
</table>

Discrete Score:
- 0 (no proof)
- 1 (proof)

Continuous Score:
- 0.00 (no matches)
- 0.XX (some but not all)
- 1.00 (perfect match)
96/2544 These headphones don’t work.
Tom was moaning in pain.

Tom kreunde van de pijn.
The Match

<table>
<thead>
<tr>
<th>Classic Boxer</th>
<th>Neural Boxer</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Tokenisation (Elephant)</td>
<td>✓ No tokenisation</td>
</tr>
<tr>
<td>✓ Syntactic parsing (EasyCCG)</td>
<td>✓ OpenNMT</td>
</tr>
<tr>
<td>✓ Semantic tagging</td>
<td>✓ 2 bi-LSTM layers</td>
</tr>
<tr>
<td>✓ Thematic role labelling</td>
<td>✓ 300 nodes</td>
</tr>
<tr>
<td>✓ Word sense disambiguation</td>
<td>✓ Naïve dropout: 0.2</td>
</tr>
<tr>
<td>✓ Pronoun resolution</td>
<td>✓ General attention</td>
</tr>
<tr>
<td>✓ Presupposition projection</td>
<td>✓ Beam size 10 during decoding</td>
</tr>
<tr>
<td>✓ Lambda calculus</td>
<td>✓ Coach: Rik van Noord</td>
</tr>
<tr>
<td>✓ Coach: Johan Bos</td>
<td>✓ Coach: Rik van Noord</td>
</tr>
</tbody>
</table>
Variables as nameless dummies (de Bruyn 1972)

Input:

“She showers every morning”

Output:

- b_3 REF x_1
- b_3 female “n.02” x_1
- b_4 REF e_1
- b_4 shower “v.03” e_1
- b_4 Agent e_1 x_1
- b_4 Time e_1 x_2
- b_2 REF x_2
- b_2 morning “n.01” x_2
- b_0 IMP b_2 b_4

Using de Bruyn indexing

“She showers every morning”

- 0 REF
- 0 female “n.02” @0
- 1 REF
- 1 shower “v.03” @0
- 1 Agent @0 @1
- 1 Time @0 @-1
- 2 REF
- 2 morning “n.01” @0
- 3 IMP 2 1
Neural Boxer, character-based

Input: S,h,e,+s,h,o,w,e,r,s,+e,v,e,r,y,+m,o,r,n,i,n,g.

Output:

$0,+,$REF,| | |, $0,+,$f,e,m,a,l,e,+"n.02",+,@0,| | |,
$1,+,$REF,| | |, $1,+,$s,h,o,w,e,r,+"v.03",+,@0,| | |,
$1,+,$Agent,+,@1,+,@0,| | |, $1,+,$Time,+,@-1,+,@0,| | |,
$2,+,$REF,| | |,$2,+,$m,o,r,n,i,n,g,+"n.01",+,@0,| | |,
$3,+,$IMP,+,$2,+,$1,| |
<table>
<thead>
<tr>
<th>DRS parser</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spar</td>
<td>40</td>
</tr>
<tr>
<td>Classic Boxer</td>
<td>74</td>
</tr>
<tr>
<td>Neural Boxer</td>
<td></td>
</tr>
<tr>
<td>Neural Boxer + silver data</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DRS parser</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spar</td>
<td>40</td>
</tr>
<tr>
<td>Classic Boxer</td>
<td>74</td>
</tr>
<tr>
<td>Neural Boxer</td>
<td>78</td>
</tr>
<tr>
<td>Neural Boxer + silver data</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DRS parser</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spar</td>
<td>40</td>
</tr>
<tr>
<td>Classic Boxer</td>
<td>74</td>
</tr>
<tr>
<td>Neural Boxer</td>
<td>78</td>
</tr>
<tr>
<td>Neural Boxer + silver data</td>
<td>84</td>
</tr>
</tbody>
</table>

The Silence of the Lambdas
seq2seq, no spaces (only 5% decrease in F-score)

S,h,e,s,h,o,w,e,r,s,e,v,e,r,y,m,o,r,n,i,n,g,.

$0,+,$REF, || ||,
$0,+,$f,e,m,a,l,e,+,"n.02"$,+$,@0, || ||,
$1,+,$REF, || ||,
$1,+,$s,h,o,w,e,r,+,"v.03"$ + @0 || ||,
$1,+,$Agent,+,@1,+,@0, || ||,
$1,+,$Time,+,@-1,+,@0, || ||,
$2,+,$REF, || ||,
$2,+,$m,o,r,n,i,n,g,+,"n.01"$,+$,@0, || ||,
$3,+,$IMP,+,$2,+,$1, || ||
Is NB learning recursive structures?

Tom’s cellphone rang and he answered it.

B4:[x1][male(x1),Name(x1,tom)]
B5:[x2][cellphone(x2),User(x2,x1)]
B2:[x3][ring(x3),Theme(x3,x2)]
B5:[x5][answer(x5),Agent(x5,x2),Patient(x5,x6)]
B7:[x6][entity(x6)]
B2:CONTINUATION B3 B4
Back to the Future
Results – the Moment of Meaning

- Meaning Banking
 - integrating lexical with formal semantics
 - Language-neutral semantic annotation
 - Multi-lingual (projection saves annotation time!)

- Meaning Interpretation
 - Semantic tagging
 - Neural semantic parsing outperforms traditional parsing
 - Still lots of stuff to explore
recognizing textual entailment, large annotated corpora, distributional semantics

Montague semantics

1970s

under-specification, automated inference

1990s

wide coverage semantic parsers

2000s

recognizing textual entailment, large annotated corpora, distributional semantics

2010s

some stuff with neural networks

2020s

parsers for small fragments, dynamic semantics

1980s

Montague semantics

1970s

under-specification, automated inference

1990s

wide coverage semantic parsers

2000s

recognizing textual entailment, large annotated corpora, distributional semantics

2010s

some stuff with neural networks

2020s
Future

- Computational Semantics
 - We need other resources for inference (Poliak et al. 2018)
 - Explainable NLP (not just labels)
 - We need to think more “multilingual”

- Add meaning to MT
 - Verify translations with semantic parsing
 - MTL with semantic tagging as aux task?
 - Outperform BLEU
Shared Task on DRS parsing
IWCS, Gothenburg, 23-27 May 2019

DRS parsing in a nutshell

He played the piano and she sang.

DRS in clausal form:

- b0 DRS b1
- b2 REF x1
- b2 male "n.02" x1
- b1 REF e1
- b1 play "v.03" e1
- b1 Agent e1 x1
- b1 Theme e1 x2
- b3 REF x2
- b3 piano "n.01" x2
- b4 REF t1
- b4 time "n.08" t1
- b4 TPR t1 "now"
- b0 CONTINUATION b1 b5

System output:

- b0 DRS b5
- b6 REF x3
- b6 female "n.02" x3
- b5 REF e2
- b5 sing "v.01" e2
- b5 Agent e2 x3
- b5 Time e2 t2
- b7 REF t2
- b7 TPR t2 "now"
- b7 time "n.08" t2
- b1 Time e1 t1

DRS in box form:

- t1 b4
 - time.n.08(t1)
 - t1 < now

- t2 b7
 - time.n.08(t2)
 - t2 < now

- b1
 - play.v.03(e1)
 - Time(e1,t1)
 - Theme(e1,x2)
 - Agent(e1,x1)

- b5
 - sing.v.01(e2)
 - Time(e2,t2)
 - Agent(e2,x3)

CONTINUATION(b1,b5)

- b2
 - b1
 - male.n.02(x1)

- b3
 - piano.n.01(x2)

- b6
 - female.n.02(x3)
The End

pmb.let.rug.nl

competitions.codalab.org/competitions/20220
References