Truth or Lie? Spoken Indicators of Deception in Speech

Julia Hirschberg Columbia University EMNLP 2018

Collaborators

- Sarah Ita Levitan
- Michelle Levine
- Guozhen An (CUNY)
- Andrew Rosenberg (CUNY, now Google)
- Gideon Mendels
- Nishmar Cestero
- Rivka Levitan
- Xi Chen
- Kara Schechtman
- Angel Maredia
- Jessica Xiang
- Bingyan Hu
- William Wang

- James Shin
- Yocheved Levitan
- Mandi Wang
- Kai-Zhan Lee
- Zoe Baker-Peng
- Ivy Chen
- Meredith Cox
- Leighanne Hsu
- Yvonne Missry
- Gauri Narayan
- Molly Scott
- Jennifer Senior
- Grace Ulinksi
- Mukund Yelahanka Raghuprasad

Columbia Speech Lab

Deceptive Speech

- Deliberate choice to mislead
 - Without prior notification
 - To gain some *advantage* or to avoid some *penalty*
- Deception does not include:
 - Self-deception, delusion, pathological behavior
 - Theater
 - Falsehoods due to ignorance/error
- *Everyday (White) Lies* very hard to detect
- But *Serious Lies may* be easier...

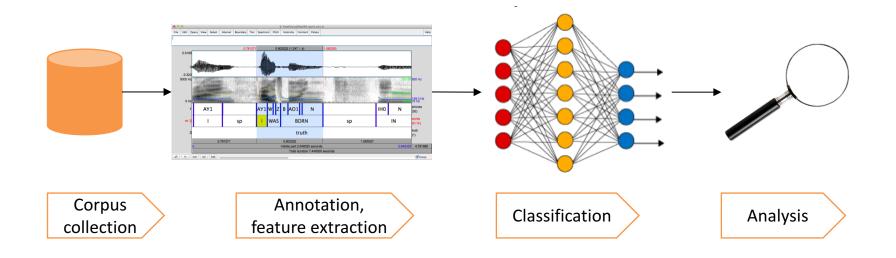
Why might Serious Lies be easier to identify?

- *Hypotheses* in research and among practitioners:
 - Our *cognitive load* is increased when we lie because...
 - We must keep our story straight
 - We must remember what we *have* and *have not* said
 - Our *fear of detection* is increased if...
 - We believe our target is difficult to fool
 - Stakes are high: serious rewards and/or punishments
- All this makes it hard for us to control potential indicators of deception

Humans are very poor at Recognizing these Cues (Aamodt & Mitchell 2004 Meta-Study)

Group	#Studies	/ #Subjects	Accuracy %
Criminals	1	52	65.40
Secret service	1	34	64.12
Psychologists	4	508	61.56
Judges	2	194	59.01
Cops	8	511	55.16
Federal officers	4	341	54.54
Students	122	8,876	54.20
Detectives	5	341	51.16
Parole officers	1	32	40.42

⁰

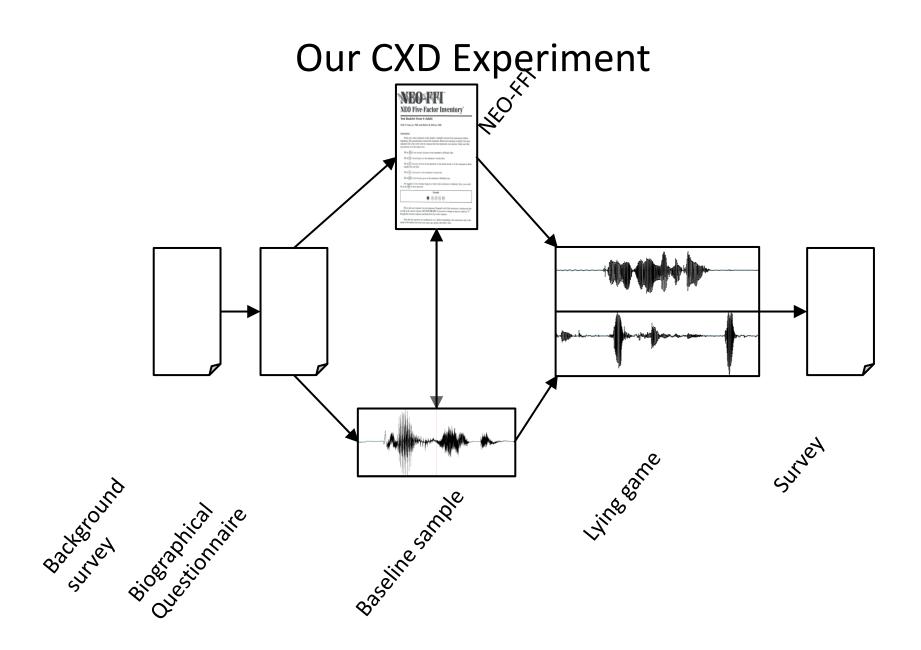

Current Approaches to Deception Detection

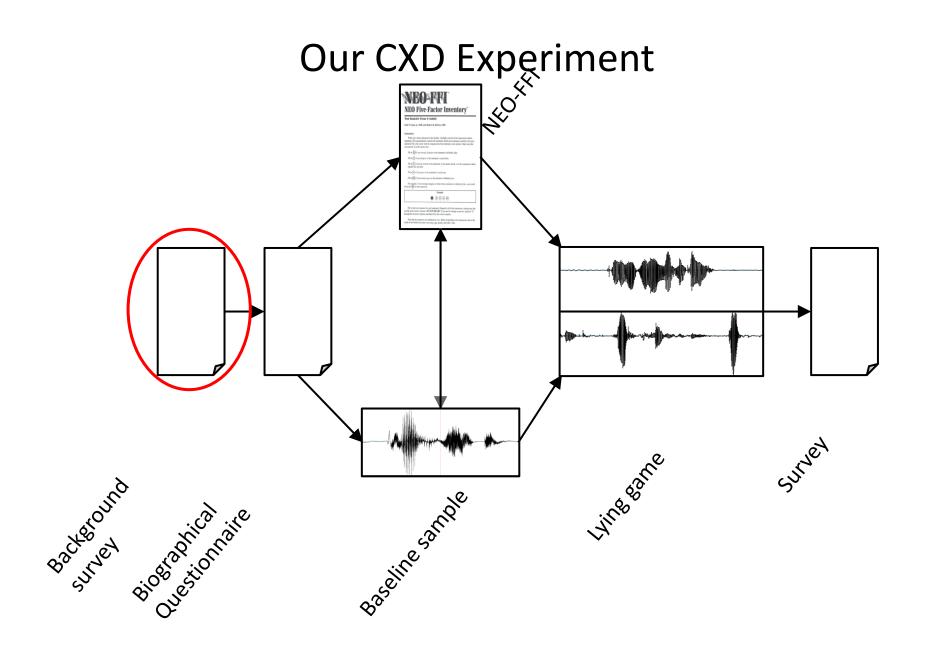
- *Automatic' methods* (polygraph, commercial products) no better than chance
- Human training: e.g. John Reid & Associates
 - Behavioral Analysis: Interview/Interrogation no empirical support, e.g.
 - Truth: I didn't take the money vs. Lie: I did not take the money (but non-native speakers use contractions less....)
- *Laboratory studies*: Production and perception (facial expression, body posture/gesture, statement analysis, brain activation, odor,...)

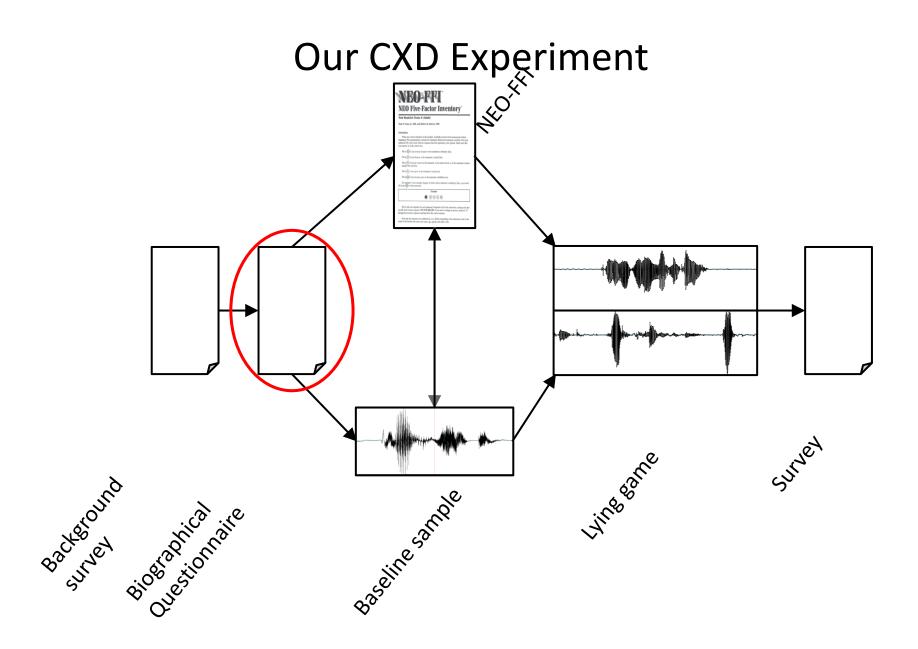
Our Goal

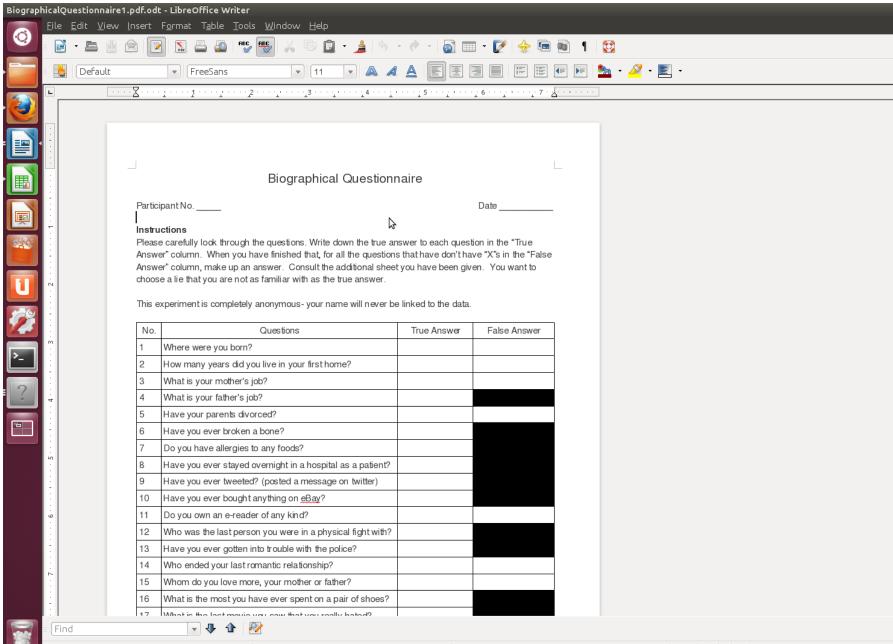
- *Conduct objective experiments on human subjects* to identify *spoken language* cues to deception
- Collect speech data and extract *acoustic-prosodic*, and *lexical cues* automatically
- Examine *Individual Differences*: Take *gender, ethnicity, culture, and personality factors* into account as features in classification
- Use *Machine Learning* techniques to train models to classify deceptive vs. non-deceptive speech and *use these to improve deception detection* by humans by creating better methods of identifying the subtle cues humans may miss: *Collaborative Al*

Deception Detection from Spoken Language

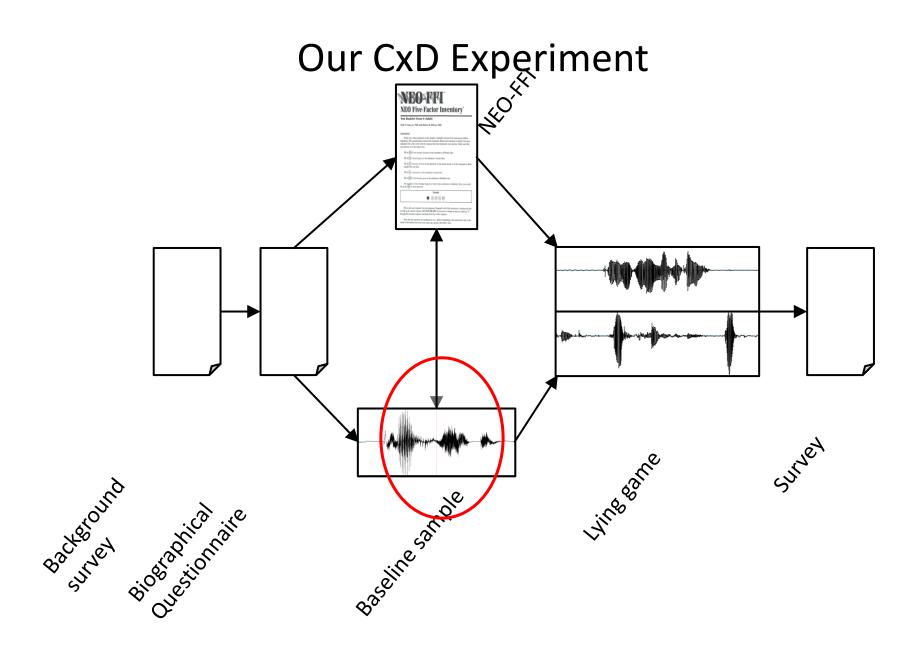


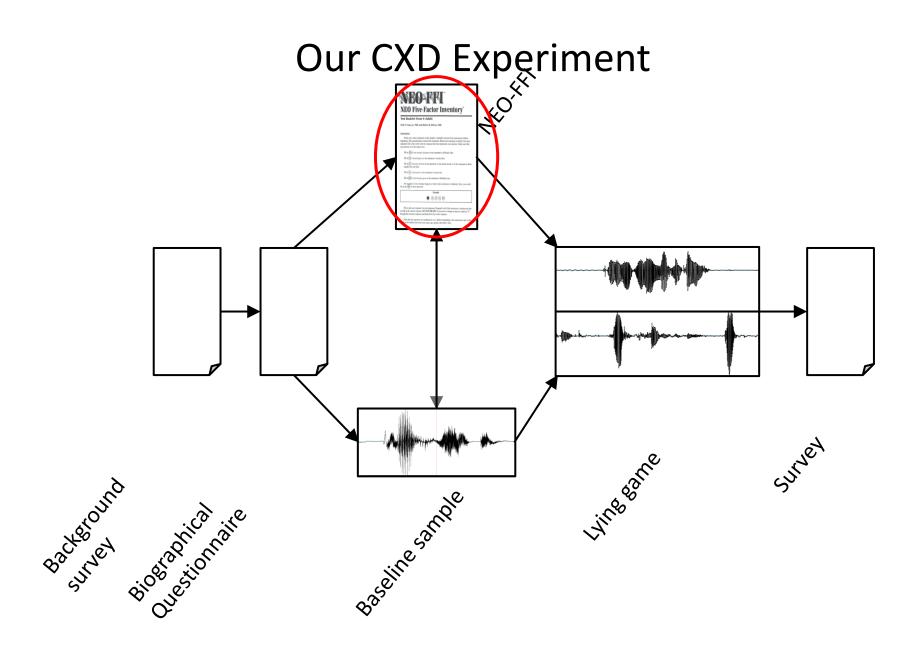

Columbia SRI Colorado Deception Corpus ('03--)


- Corpus:
 - *Th of speech* from 32 Standard American English-speaking subjects performing tasks and asked to lie about half
 - Examined *lexical and acoustic-prosodic features*
 - Obtained classification *accuracy* of (70.67%) *significantly better than the* corpus baseline (59.93%)
 - Humans judging the same data performed worse than both (58.2%)
- Other findings:
 - Our classifiers *performed better on male subjects than females*
 - Our human judges who were high in certain personality features (openness-to-experience, agreeableness) performed much better than others on judging deception

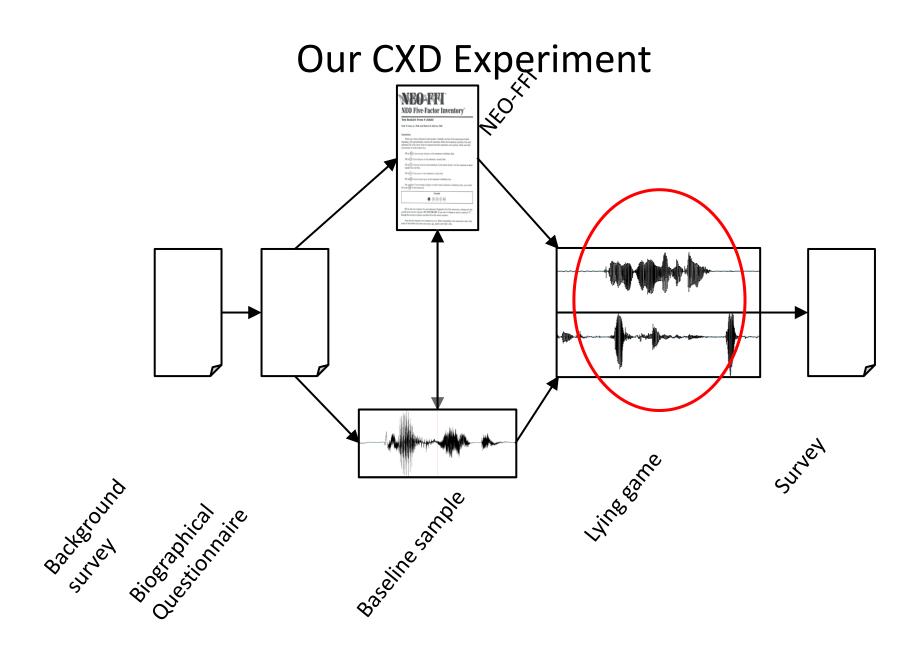

Columbia Cross-Cultural Deception Corpus (CXD)

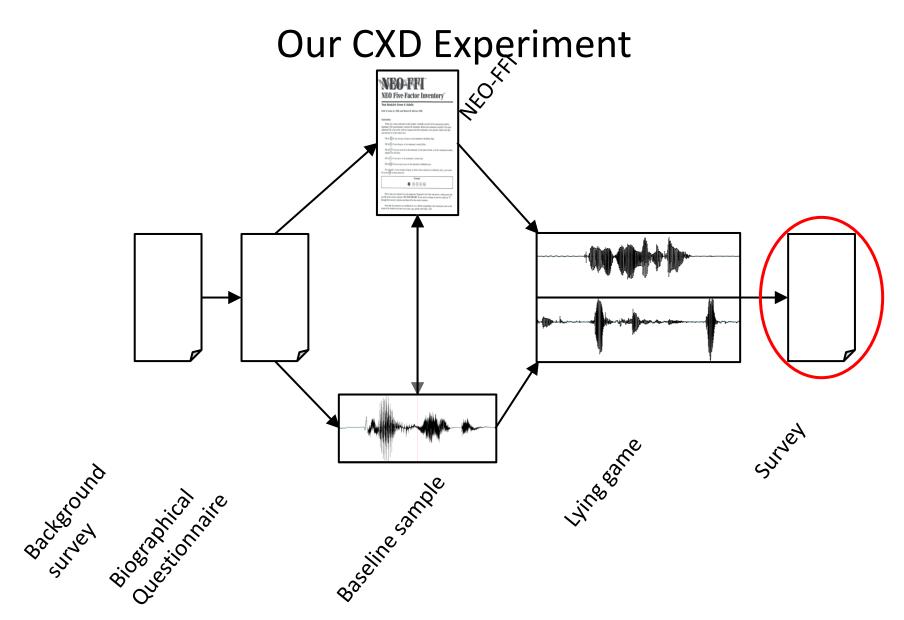
- Include
 - Gender and personality information for all subjects
 - Compare subjects with different cultural and language backgrounds
- CXD: Pair native speakers of SAE with native speakers of Mandarin Chinese, all speaking English, interviewing each other





Page 1 / 1


Default


The Big Five NEO-FFI (Costa & McCrae, 1992)

- Openness to Experience: "I have a lot of intellectual curiosity."
- **Conscientiousness:** "I strive for excellence in everything I do."
- Extraversion: "I like to have a lot of people around me."
- Neuroticism: "I often feel inferior to others."
- Agreeableness: "I would rather cooperate with others than compete with them."

Our CXD Experiment

Motivation and Scoring

- Monetary motivation
 - Success for interviewer:
 - Add \$1 for every correct judgment, truth or lie
 - Lose \$1 for every incorrect judgement
 - Success for interviewee:
 - Add \$1 for every lie interviewer thinks is true
 - Lose \$1 for every lie interviewers thinks is a lie
- Good liars tell the truth as much as possible when lying, so how do we know what's true or false for follow-up questions?
 - Interviewees press T/F keys after every phrase

Columbia X-Cultural Deception Corpus

- 340 subjects, balanced by gender and native language (American English, Mandarin Chinese): 122 hours of speech
- Crowdsourced transcription, automatic speech alignment (hand-corrected)
- Interviewee speech segmented into
 - Inter-pausal units (IPUs): 111,479
 - Speaker turns: 43,706
 - Question/answer sequences (Q/1st Response and Q/Resp+follow-up): 7,418

Deception Annotation

- Deception annotation
 - Local deception: T/F keypresses
 - Global deception: biographical questionnaire, automatically "chunked" (Maredia et al 2017)

• Example

- Interviewer: "What is your mother's job?"
- Interviewee: "My mother is a doctor [F]. She has always worked very late hours and I felt neglected as a child [T]."
 - Global lie with local truth...

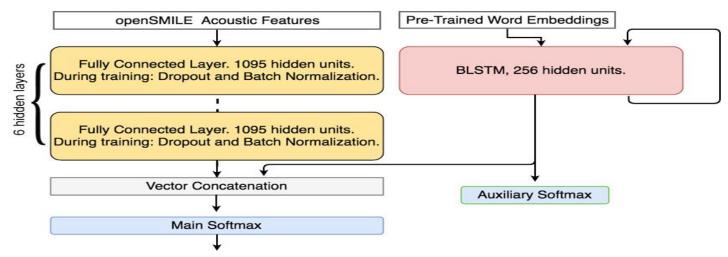
TRUE or FALSE?

TRUE or FALSE?

Features Extracted

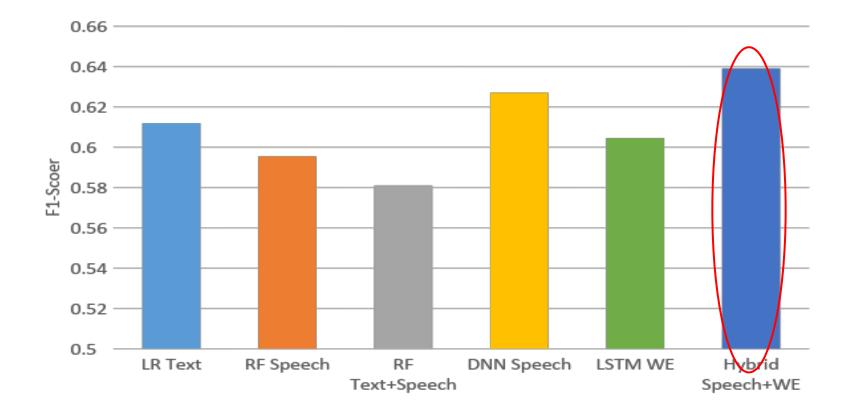
- Text-based: n-grams, psycholinguistic, Linguistic Inquiry and Word Count (LIWC) (Pennybaker et al), word embeddings (GloVe trained on 2B tweets)
- **Speech-based**: openSMILE IS09 (e.g. f0, intensity, speaking rate, voice quality)(386)
- Gender, native language, NEO-FFIs personality scores and clusters
- Syntactic features (complexity), entrainment, regional origin

Segmentations


- *IPUs (Inter-Pausal Units):* single-speaker phrases separated by at least 50ms
- Speaker turns
- *First response* to questions: First Turn
- *Entire set of responses* to a question: "Chunks"

Classifiers

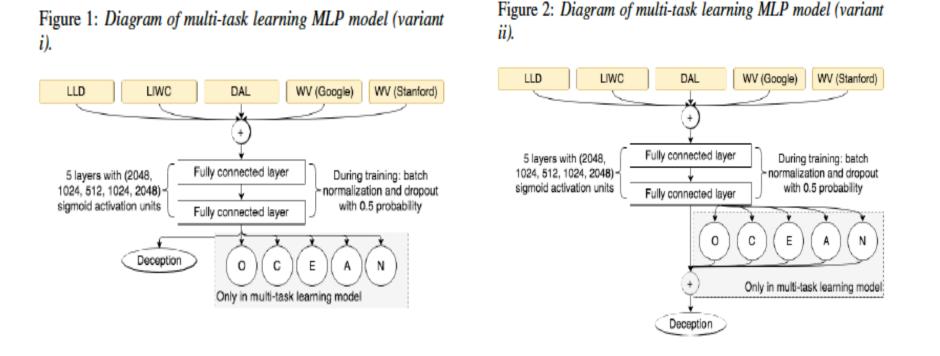
- Random Forest
- SVMs
- Deep Learning
 - DNNs
 - BLSTMs
 - *Hybrid models:* BLSTM-GloVe embeddings + DNNopenSMILE


Deep Learning on Word Embeddings and openSmile Acoustic Features

- BLSTM-word embeddings
- DNN-openSMILE
- *Hybrid: BLSTM-lexical + DNN-openSMILE*

Mendels, Levitan et al. 2017, "Hybrid acoustic lexical deep learning approach for deception detection," Interspeech, Stockholm.

IPU Classification: Hybrid Achieves Best F1



Mendels, Levitan et al. 2017, "Hybrid acoustic lexical deep learning approach for deception detection "

Improving Deception Detection with Personality Features

- Ahn et al '18 trained deception classifiers on *speaker turns (not IPUs)* using acoustic/ prosodic and lexical information (LIWC, DAL, LLDs, pre-trained word embeddings (GloVe, Google)
 - Baseline models: Multilayer perceptron, LSTM, and Hybrid model combining both
 - Adding personality through multi-task learning or adding personality scores as features improved F1 from .68 to .744 for the MLP model and slighted less for the Hybrid model (no improvement in the LSTM)

Best MLP Models Adding Personality

An, Levitan et al. 2018, "Deep Personality Recognition for Deception Detection," Interspeech, Hyderabad.

Results for Speaker Turns

Multi-task Learning (1)

Baseline w/out Personality

Model	Prec	Recall	F1
MLP	68.08	67.95	68.01
LSTM	65.64	66.08	65.78
Hybrid	69.43	69.46	69.45

Model	Prec	Recall	F1
MLP	74.33	74.51	74.39
LSTM	64.61	65.56	64.40
Hybrid	69.42	69.76	69.51

Multi-task Learning (2)

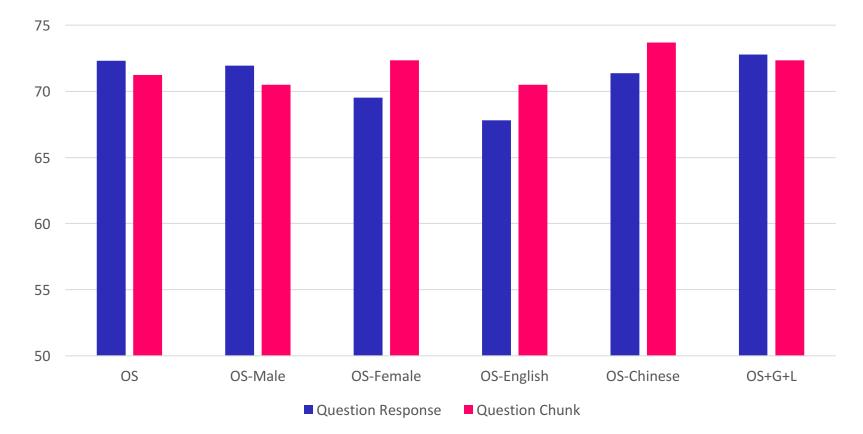
Model	Prec	Recall	F1
MLP	74.37	74.67	74.38
LSTM	66.13	67.03	65.89
Hybrid	72.58	72.98	72.70

What Next Can We Learn from Gender and Native Language?

- Extract simple acoustic/prosodic features from question responses
- Compare distributions of features over all and by gender and native language
 - When interview*ees* lie vs. tell the truth
 - When interview ees are trusted (believed) or are not
 - When interviewers trust (believe) an interviewee or do not
- Perform *paired t-tests* to compare feature means
 - Tests for significance correct for family-wise Type I error by controlling the false discovery rate at α=0.05.
 (Parentheses indicate an uncorrected p <=0.05.)

Feature	Male	Female	English	Chinese	All
Pitch Max					~
Pitch Mean					
Intensity Max					~
Intensity Mean					
Speaking Rate					
Jitter					
Shimmer					
NHR					

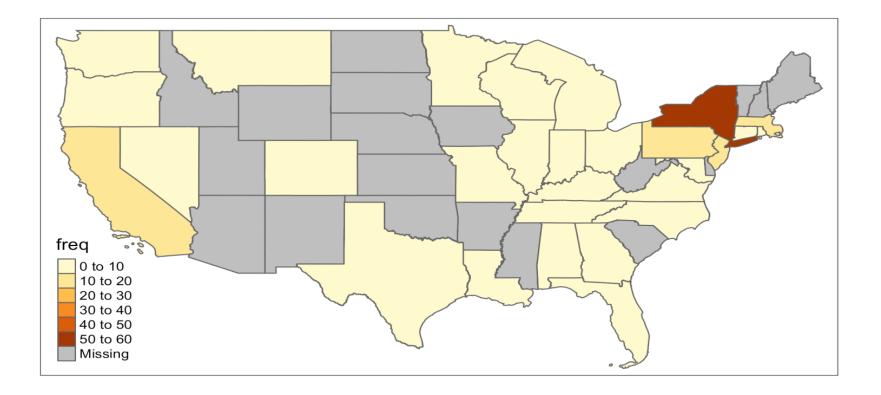
Feature	Male	Female	English	Chinese	All
Pitch Max	v				
Pitch Mean					
Intensity Max	~	(🖌)			
Intensity Mean					
Speaking Rate					
Jitter		(🗸)			
Shimmer					
NHR					

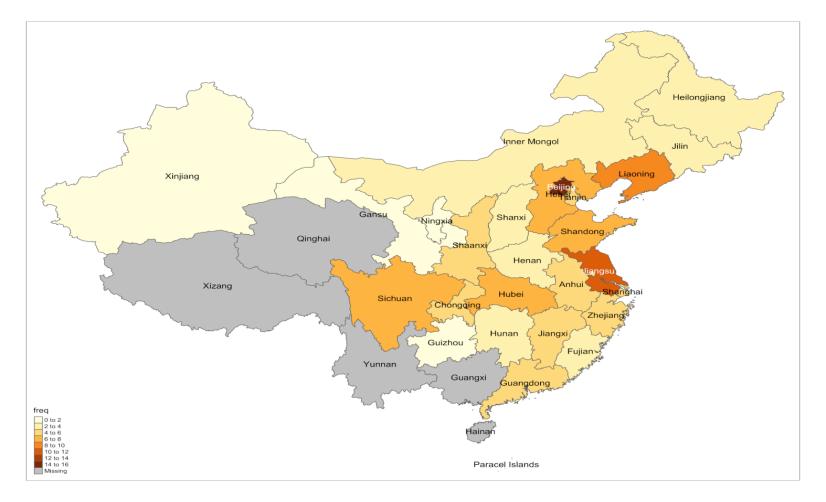

Feature	Male	Female	English	Chinese	All
Pitch Max				v	
Pitch Mean					
Intensity Max			V		
Intensity Mean			(🖌)		
Speaking Rate				v	
Jitter					
Shimmer					
NHR					

Feature	Male	Female	English	Chinese	All
Pitch Max	~			v	v
Pitch Mean					
Intensity Max	~	(🖌)	V		 Image: A set of the set of the
Intensity Mean			(🖌)		
Speaking Rate				v	
Jitter		(🖌)			
Shimmer					
NHR					

Do Gender and Native Language Help in Classification?

- *Features:* openSMILE (384 acoustic/prosodic features), Gender, Native Language
- *Classifier:* Random Forest fewer inputs
- Data: 7,878 question responses (first response and "chunks") and subsets for Gender and Native Language
- **Baselines:** random, 50.0 F1 (data is balanced for T and F labels); human baseline for this data is 46.0 F1


Train/Test on Gender and Native Language Groups and Adding Features to a General Classifier


More Individual Differences

- We have also found individual differences in *interviewee responses that interviewers believe true*, based both on the gender and native language of the (a) *interviewee* and that of the (b) *interviewer*
- We have also found differences in *entrainment* in deceptive vs. truthful speech which may also serve as useful deception indicators
- Our next look at individual differences is looking more specifically at *regional background*

Native American English Speaker States in USA

Native Mandarin Speaker Provinces in China

Recall that Machine Learning Models Perform much Better than Humans in Deception Detection

- Corpus Baseline: 50.00 (balanced)
- Human Performance:
 - Accuracy: 56.75
 - Precision: 56.50
 - Recall: 40.00
 - F1: 46.50

How Do Our Classifiers Compare to Humans?

- Corpus Baseline: 50.00 (balanced)
- Human vs. ML Performance:
 - Accuracy: 56.75/ 75.21
 - Precision: 56.50/ 79.30
 - Recall: 40.00/ 67.23
 - F1: 46.50/ 72.77
- But where do the differences lie?

In our Al-Centric World: When are Machines Better (or Worse) than Humans?

- Are certain speakers more difficult to judge than others?
- Are certain groups more difficult to judge than others?
- Are *particular question types* more difficult to judge than others?
- Does this differ for humans and machines?

Method

Data

- Naïve Bayes classifier
- 5000 lexical + syntactic features
- Question chunk segmentation (same as humans)

Procedure

- Aggregate all question chunk segments by speaker
- Compute F1_c: average classifier F1 per speaker
- Compute F1_{human}: average human F1 per speaker
- 340 speakers x 24 questions = 8160 aggregated segments

Findings

- No correlation between humans and classifiers in which speakers are easy or difficult to judge – here classifiers and humans differ – how?
- No difference between humans and classifiers in judging gender or native language groups although classifier much better at judging speakers who scored low in Conscientiousness (NEO-FFI)
- Both humans and classifiers judged longer responses as lies and shorter ones as truthful and both found most of the same questions easy or hard to judge

Some "Easy" Questions for Both

- Question #5: Have your parents divorced?
- Question #13: Have you ever gotten into trouble with the police?
- Question # 16: What is the most you have ever spent on a pair of shoes?
- What makes these easier to classify?

Some "Easy" Questions for Both

- Question #5: Have your parents divorced?
- Question #13: Have you ever gotten into trouble with the police?
- Question # 16: What is the most you have ever spent on a pair of shoes?
- What makes these easier to classify?
 - ~80% of interviewee parents were not divorced
 - ~80% of interviewees had never gotten into trouble with the police
 - Most spent on pair of shoes: median(T)=\$150; median(F)=\$350

A Hard Question for Both

- Question #8: Have you ever stayed overnight in the hospital as a patient?
 - Human_{F1}: 50 F1 (-6.37 from mean)
 - Classifier_{F1}: 64.59 F1 (-5.22 from mean)
- What makes this harder to classify?

A Hard Question for Both

- Question #8: Have you ever stayed overnight in the hospital as a patient?
 - Human_{F1}: 50 F1 (-6.37 from mean)
 - CLassifier_{F1}: 64.59 F1 (-5.22 from mean)
- What makes this harder to classify?
 - ~60% of interviewees never stayed overnight in the hospital as a patient

Hard for Humans, Easy for Classifier

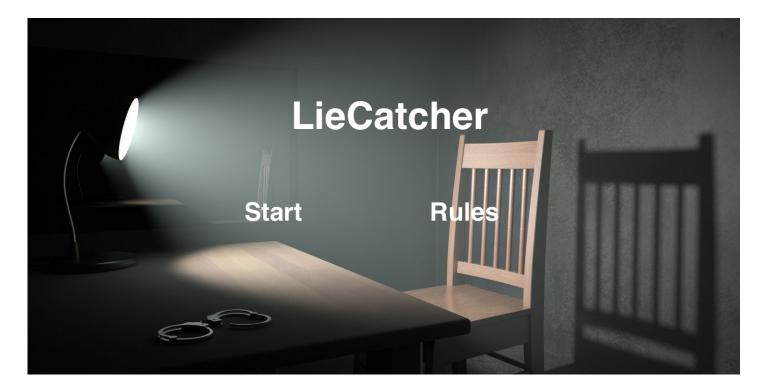
- Question #6: Have you ever broken a bone?
 - Human_{F1}: 51.55 F1 (-4.82 from mean)
 - Classifier_{F1}: 72.61 F1 (+2.85 from mean)
- What percentage of interviewees do you think had ever broken a bone?

Hard for Humans, Easy for Classfiers

- Question #6: Have you ever broken a bone?
 - Human_{F1}: 51.55 F1 (-4.82 from mean)
 - Machine_{F1}: 72.61 F1 (+2.85 from mean)
- What percentage of interviewees do you think had ever broken a bone?
 - ~75% had never broken a bone

Performance by Question Type

- Yes-no (13) vs. open-ended (11) questions
- Sensitive (8) vs. non-sensitive (16) questions
- Sensitive: related to money, parental or romantic relationships, mortality, socially undesirable behaviors or experiences (Tourangeau & Yan, 2007)
 - e.g. "Who ended your last romantic relationship?" "Who do love more, your mother or your father?"

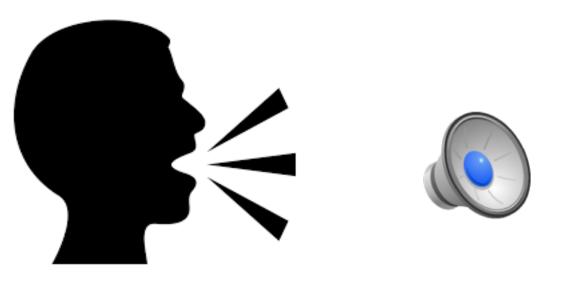

Performance by Question Type

- Yes-no (13) vs. open-ended (11) questions
- Sensitive (8) vs. non-sensitive (16) questions
- Sensitive: related to money, parental or romantic relationships, mortality, socially undesirable behaviors or experiences (Tourangeau & Yan, 2007)
 - e.g. "Who ended your last romantic relationship?" "Who do love more, your mother or your father?"
- Human were significantly better at judging sensitive questions than non-sensitive, while Classifiers showed no differences across question types

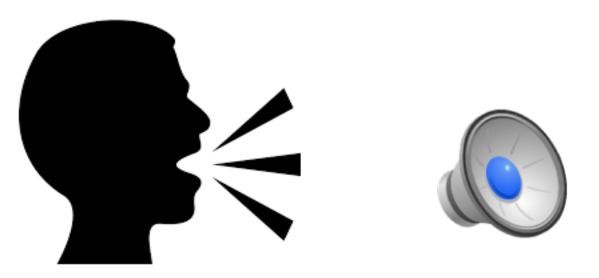
Current and Future Research

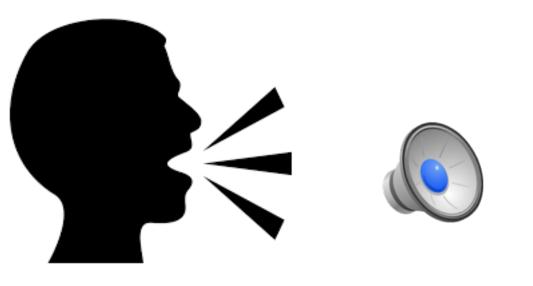
- Many individual differences to be considered: Incorporating all features into our deep learning classifiers: gender, native language, personality, entrainment, regional origin as well as acoustic, lexical and syntactic features
- Creating "trusted" and "mistrusted" synthetic voices based on our findings (What are the acousticprosodic features of voices that hearers believe or do not believe?) for robots, avatars, chatbots
- Obtain more human judgments on our data through crowd-sourcing: The Lying Game

Games with a Purpose



Levitan et al. 2018, "LieCatcher: Game framework for collecting human judgments of deceptive speech," LREC 2018, Miyazaki.


True or False?


True or False?

True or False?

True or False?

Thank you!

